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SIMULTANEOUS VELOCIMETRY AND THERMOMETRY OF AIR USING

NONRESONANT HETERODYNED LASER-INDUCED THERMAL ACOUSTICS

ROGER C. HART t, R. JEFFREY BALLA 2, AND G. C. HERRING 2

Abstract. Non-resonant laser-induced thermal acoustics (LITA) is employed with heterodyne

detection to measure temperature (285-295 K) and a single component of velocity (20-150 m/s) in an

atmospheric pressure, subsonic, unseeded air jet. Good agreement is found with pitot-tube measurements of

velocity (0.2% at 150 m/s and 2% at 20 m/s) and the isentropic expansion model for temperature (0.3%).

Key words, velocimetry, thermometry, heterodyne, nonresonant Light Scattering, laser-induced

thermal acoustics, LITA

Subject classification. Physical Sciences

1. Introduction. Non-intrusive optical velocimetry is done either by intervalometry (e.g., particle

image velocimetry or cross-correlation techniques) or by observing the Doppler shift AoJ. Examples of the

second approach are laser Doppler velocimetry (LDV) and planar Doppler velocimetry (PDV). Accurate

measurement of the small Doppler shift found in typical subsonic aerodynamic applications is challenging.

In PDV differential transmission at the absorption edge of an atomic line filter provides the necessary

frequency resolution. With LDV, what is essentially a heterodyne technique is used. Both of these

approaches require seeding with small particles. Seeding is inconvenient in some instances and impossible

in others. Potential seeding problems include nonuniformities in the seed density, pitting of smooth model

surfaces, seed particles lagging the flow, and the inability to seed specific locations (e.g., boundary layer).

Laser-induced thermal acoustics (LITA) is a seedless diagnostic technique in which optical

interference patterns induce sound waves and thermal gratings in the medium. Early gas-phase work [1-3]

utilized a resonant version of LITA, in which the pump laser frequency was resonant with a molecular

transition. Absorption in the molecule of interest, followed by thermalization, generated a stationary

thermal grating and two moving acoustic gratings. These gratings were used to demonstrate sound speed

measurements [4] versus pressure. More recently, nonresonant versions have been demonstrated for

thermometry [5-7] and sound speed measurements [8] versus temperature. The nonresonant version

generates only two moving acoustic gratings. Because nonresonant LITA does not require absorption, it is

convenient for interrogation of a variety of atomic and molecular species. Hence, non-resonant LITA is

attractive for application to a wide array of wind tunnels using various test gases. Most recently
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heterodyned velocimetry [9] has been achieved with resonant LITA. In this letter, we demonstrate,

simultaneously, heterodyned velocimetry and thermometry with nonresonant LITA at a single spatial point.

2. Description of Heterodyne LITA Velocimetry. In nonresonant LITA, two crossed beams

from a short-pulse pump laser create counter-propagating acoustic plane wave packets in the medium by

electrostriction. Illumination of these wave packets with a second long-pulse probe laser, at frequency £2L,

generates a Bragg-diffracted signal beam that consists of two overlapped and co-propagating (but distinct)

components. These two components are distinguished by their different Doppler shifts, + Am, which are

determined by the counter-propagating geometry of the two acoustic wave packets. The beating together of

the two components, at frequencies £2L+ Am, produces a modulation of this Bragg-diffracted signal beam at

frequency 2 Am. If the sound wave reciprocal wavelength is Ak (i.e., wave vector difference of the two

pump beams) and bold-faced quantities denote vectors, the two Doppler shifts are Am = Ak • (+Vs), where

+Vs are the velocities of the two counter-propagating wave packets and I_+Vsl-- the speed of sound.

Measurement of the beat frequency 2 Am, with the known grating wavelength 1/Ak, yields the sound speed.

Temperature T is also determined because T _ _/Vs. If the medium is in motion at velocity VF (assumed to

be parallel to Ak and Vs) the frequencies of the signal beam are shifted to £2L + Ak • (VF + Vs), but the

difference frequency and the beating are unchanged.

The bulk fluid motion at velocity VF is also readily obtained from LITA. Walker et al. [10], have

demonstrated LITA velocimetry using a single-mode probe laser and etalon to detect the shift due to fluid

flow in the frequency domain. Here we use an approach [11], which does not require a narrow band,

frequency-stable probe source or a high-finesse etalon. We introduce a local oscillator beam at the probe

frequency £2L, of suitable intensity, that is collinear with the diffracted signal beam. The detected signal

then shows modulation at three frequencies: 2 Am and Am + (Ak • VF). The measured frequency at 2

Am again gives Vs and T, while VF is found from the difference in frequency 2 Am' between the other two

components, where Am' = Ak • VF. The signal is digitized, and the frequencies are extracted either by

spectral methods (Prony's method) or by Levenberg-Marquardt fitting in the time domain. Thus Vs = Am/

Ak, T _ _/Vs, and VF = Vs Am' / Am = Am' / Ak. Sound speed, temperature, and one component of fluid

velocity are determined simultaneously in a measurement time of about 1 gs.

3. Experimental Apparatus. The experimental setup is shown in the schematic of Fig. 1. Two

7-ns pump pulses (532 nm) are derived from a single laser beam (not shown) and crossed at 2 0 = 0.9 deg,

making sure that longitudinal coherence between the two beams is maintained at the crossing point. The

~10 gs probe pulse (750 nm), derived from a second laser, traverses the crossing point at the Bragg phase-

matching angle of _) = 0.6 deg. Both lasers operate at 10 Hz, however LITA data is acquired at 1 Hz. Peak

pulse intensities are about 7 MW and 3 kW for the pump and probe beams, respectively. A fraction of the

750-nm beam is split oft" (not shown) from the probe to use as the local oscillator (LO) beam, which is

directed exactly along the path expected for the Bragg-diffracted LITA signal. A beam block for both of



the pumps and the probe reduces scattered light into the detector. The sample volume, defined by the

overlap volume of the crossing of the probe and LO input beams, is ellipsoidal, about 1 by 15 mm, with the

longer dimension collinear with the optic axis and perpendicular to the flow direction. The long axis of the

ellipsoid is located 5 mm downstream from the exit plane of a subsonic jet. A variable-speed jet exhausting

into the room air (with a 5 by 35-mm rectangular cross section nozzle) was used to produce a range of

uniform flow velocities over the sample volume, by varying the backing pressure of the jet.

532 nm

Pump
e

A_r Row_ S gna + I
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Pump Mask

750 am Local
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FIG. 1. Schematic of the setup used to make temperature and heterodyned relocity measurements with LITA.

A photomultiplier tube is used to monitor the time dependent signal intensity that results from

both the Bragg-diffracted signal and the LO that propagate at angle (_ through the aperture in the blocking

mask of Fig. 1. The signals are digitized with 500-MHz-bandwidth oscilloscopes. As in Ref. [7], a second

LITA signal is simultaneously generated in a reference cell with known temperature to use as a reference

signal to normalize out small pulse-to-pulse fluctuations in the beam crossing angles. This normalizing

correction improved the quality of data in [7], but turned out to be negligible compared to random errors in

the current experiments.

A typical example of the digitized LITA signal (noisy curve) obtained for a single laser pulse with

a nonzero flow velocity is shown in Fig. 2a. We first apply Prony's method to the data of Fig. 2a to

determine the important frequency components. We use the result from Prony's method as the initial guess

in a nonlinear least squares fitting routine. The result of this Levenberg-Marquardt fitting routine (smooth

curve) is then taken as the final result for the values of the beat frequencies. The difference between the fit

and the data (noisy curve) is shown (with the same scale as used for the upper trace) in the lower trace of

Fig. 2a. Fig. 2b shows three peaks in the spectral transform of the temporal data of Fig. 2a. The value of 2

Am is given by the frequency of the right-most peak, while the value of 2 Am' is given by the frequency

difference of the two left-most peaks. In the example of Fig. 2, the airflow speed is about 25 m/s.



With our geometry (the probe beam is larger than the pump beam at the crossing point), to obtain

the degree of precision reported here, we have to include the motion of the density gratings in the model

that we fit to the data. Because the detector is fixed, the propagation of small acoustic wave packets across

the larger probe beam changes the scattering angle and the magnitude of the Doppler shift. In other words,

there is a very small frequency chirp (not obvious to the eye in Fig. 2a, but detectable in the fitting) over the

two microseconds that we observe the LITA signal. The differences between the fits and the data are

significantly reduced, especially at low velocities, when we include this grating motion (or frequency chirp)

in the fitting model.

FIG. 2. In the upper trace of (a), a single laser shot heterodyned LITA example of the temporal profile shows the data

[noisy curve] and a fit to the data [smooth curve]. The lower trace of(a) shows the difference between the fit and the data. In (b) the

corresponding spectral transform of the data is shown. Velocity, Mach number and temperatnre are obtained from the frequencies of

the three peaks.

4. Results. A comparison between LITA and pitot tube velocity measurements is shown in Fig.

3. In Fig. 3a, LITA velocity is plotted and, in Fig. 3b, the percentage difference (100 * [VLrrA -- Vpitot] /

Vpitot) is plotted - both versus pitot-tube velocity. Pitot-tube data is acquired simultaneously with the LITA

data, but 4 mm downstream from the LITA measurement location (i.e., 9 mm downstream of the jet exit

plane). Placing the LITA beams closer to the pitot tube would have scattered laser light that would have

degraded the LITA signal-to-noise ratio. After blocking the LITA laser beams, we have measured the

velocity gradient between these two measurement locations with the pitot tube. The magnitude of the

velocity gradient, between the two measurement locations, was about 1-2% of the velocity at the low-end



(20m/s)of thevelocityrangeandabout10timessmalleratthehigh-end(150m/s). Thecomparison

betweentheLITAandpitot-tubemeasurementsshowninFig.3hasbeencorrectedforthevelocitygradient
betweenthe5and9-mmpositions.ThedifferencesbetweenLITAandpitot-tubemeasurementsvaryfrom
0.2%near150m/sto2%near20m/s.EachLITAvelocityandvelocitydifferencedatapointshownisthe
averageofabout~50lasershots.Errorbarsareomittedforclarity.Inpart(a),onestandarddeviationof

thepopulationoftheLITAdataisaboutthesizeofthesymbol.Forthedifferencesshowninpart(b),one-

standarddeviationofthepopulationforeachaveragedpointvariesfrom+ 1% at 150 m/s to + 4% at 20

m/s. For both parts of Fig. 3, the errors in the mean values are about _/50 = 7 times smaller.
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FIG. 3. LITA (a) velocity and (b) the difference betn'een LITA and a pitot tube versus the pitot tube velocity. Pitot tube

data are acquired simultaneously with the LITA data. Each velocity and velocity difference point is the average of - 50 laser shots.

In Fig. 4a, LITA temperature (solid circles), for the same run as in Fig. 3, is plotted versus pitot-

tube velocity, along with an isentropic flow calculation (open diamonds) that is based on the measured

stagnation temperature inside the plenum of the flow generator and the measured pitot-tube Mach number.

In Fig 4b, the percentage difference (100 * [TErrA -- Tc,lc] / Tc,lc) is plotted. The differences are 0.3% or

less. Each temperature and difference data point shown is the average of ~ 50 laser shots. Error bars are

also omitted from Fig. 4 for clarity. In part (a), one standard deviation of the population for each LITA

data point is typically + 1.1 K or + 0.4%. Again, the one-standard deviations of the means are about _/50 =

7 times smaller.
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FIG. 4. LITA (a) temperature measurements (solid circles) obtained fi'om the same data set as used in Fig. 3,plotted as a

function of pitot tube velocity, and compared to an isentropic flow calculation (open diamonds). The differences between LITA data

and calculation are shown in (b).

5. Conclusion. In summary, non-resonant LITA has been demonstrated with heterodyne detection

to measure simultaneously temperature and a single component of velocity at a single point in a free-

expansion atmospheric-pressure air jet. The agreement of the LITA velocity with simultaneous pitot-tube

measurements varies from 0.2% at 150 m/s to 2% at 20 m/s. The LITA temperature measurements agree

with the isentropic expansion model within about 0.3% for the temperature range 285-295 K. The good

agreement between LITA and these established methods suggests that nonresonant LITA can be reliably

used for simultaneous flow velocimetry and thermometry for these flow conditions.
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